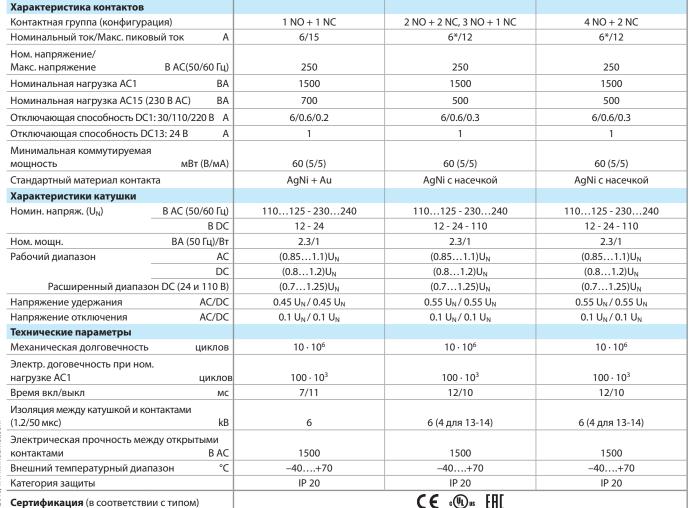


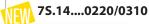
Модульное реле с принудительным управлением контактами

75.12 - 2 контакта (1NO + 1 NC) 75.14 - 4 контакта (2 NO + 2 NC и 3 NO + 1 NC)

7S.16 - 6 контакта (4 NO + 2 NC)


- Для приложений безопасности, реле с принудительным управлением контактами в соответствии с нормами EN 50205, класс A
- Для приложений до SIL 2 согласно IEC 61508
- Для обеспечения надежности функционирования инженерных машин и установок в соответствии с EN 13849-1
- Для железнодорожного применения; материалы соответствуют нормам по пожаростойкости и выделению токсичных материалов UNI 11170-3; соответствие нормам по механической прочности и климатическому исполнению EN 61373 и EN 50155
- Версии электропитания DC и AC
- Версии 24 и 110 В DC с расширенным рабочим диапазоном (0.7...1.25)U_N
- Светодиодная индикация срабатывания катушки
- Монтаж на рейку 35 мм (EN 60715)

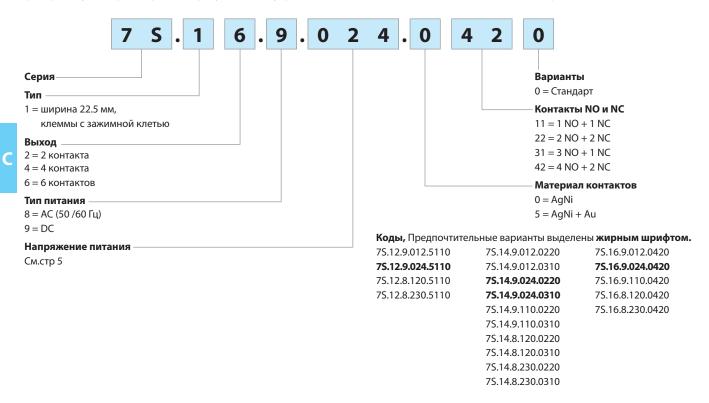
Пружинные клеммы


*Ток на одном контакте ≤ 6 А,Суммарный ток для контактов NO ≤ 12 А

См. чертеж на стр. 6

• 2 контакта (1 NO + 1 NC)

 4 контакта (2 NO + 2 NC и 3 NO + 1 NC)


• 6 контакта (4 NO + 2 NC)

XI-2016. www.findernet.com

Информация по заказам

Пример: Модульное реле серии 7S с принудительным управлением контактами, 6 контактов (4 NO + 2 NC) 6 A, напряжение питания 24 B DC.

Технические параметры

Изоляция в соответствии с EN 61810-1 ed				
Номинальное напряжение питания	B AC	230/400		
Расчетное напряжение изоляции	B AC	250		
Уровень загрязнения		2		
Изоляция между катушкой и контактной группой				
Тип изоляции		Усиленный *	Базовый *	Усиленный *
Категория перегрузки		III	III	II
Расчетное импульсное напряжение	kB (1.2/50 мкс)	6	4	4
Электрическая прочность	B AC	4000	2500	2500
Изоляция между соседними контактами				
Тип изоляции		Усиленный *	Базовый *	Усиленный *
Категория перегрузки		III	III	II
Расчетное импульсное напряжение	kB (1.2/50 мкс)	6	4	4
Электрическая прочность	В АС	4000	2500	2500
Изоляция между разомкнутыми контактами				·
Тип расцепления		Микро-расцепление		
Электрическая прочность	В AC/kB (1.2/50 мкс)	1500/2.5		

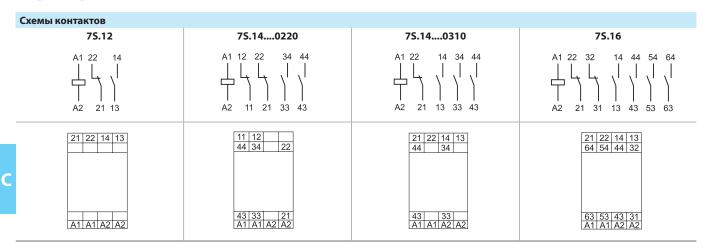
- * В таблице приводится информация для реле серии 75 по типам изоляции для разных контактных групп:
 - (R) Усиленная изоляция Категория перенапряжения III;
 - (R2) Усиленная изоляция Категория перенапряжения II;
 - (B) Базовая изоляция – Категория перенапряжения III.

Спецификация ЕМС	Ссылка на стандарт					
Разрыв (550)нс	на клеммах питания		EN 61000-4-4		4 kB	
Импульс (1.2/50 мкс) на клеммах питания	дифференциальный режим		EN 61000-4-5		1.5 kB	
Клеммы			одножильный провод многожильный про			льный провод
Макс. размер провода		MM^2	1 x 1.5		1 x 1.5	
		AWG	1 x 14		1 x 16	
Длина зачистки провада		MM	9			
Прочее			7S.12	75.14		7S.16
Время дребезга: НО/Н3		МС	2/8	1/20		1/20
Виброустойчивость (10200Гц,): НО/Н3		g	10/5	15/4		15/4
Ударопрочность: НО/Н3		g	20/6	25/13		25/13
Потери мощности	без нагрузки	Вт	0.8	0.8		0.8
	при номинальном токе	Вт	1.4	2.3		2.8

Тип изоляции между катушкой и контактами и между соседними контактами

Заказной код					
Тип изоляции		Категория перегрузки			
R	Усиленный	III			
В	Базовый	III			
R2	Усиленный	II			

7S.125110							
Катушка 13-14 21-22							
Катушка	_	R	R				
13-14		_	B/R2				
21-22			_				


75.140310								
	Катушка	13-14	21-22	33-34	43-44			
Катушка	_	В	R	R	R			
13-14		_	В	R	R			
21-22			_	R	R			
33-34				_	B/R2			
43-44					_			

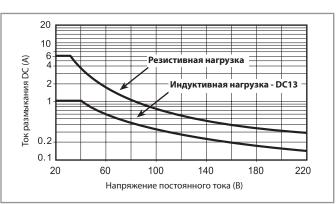
	7S.160420							
	Катушка	13-14	21-22	31-32	43-44	53-54	63-64	
Катушка	_	В	R	R	R	R	R	
13-14		_	В	R	R	R	R	
21-22			_	R	R	R	R	
31-32					B/R2	R	R	
43-44					_	B/R2	R	
53-54						_	B/R2	
63-64							_	

75.140220								
	Катушка	11-12	21-22	33-34	43-44			
Катушка	_	R	R	R	R			
11-12		_	R	R	R			
21-22			_	R	R			
33-34				_	B/R2			
43-44					_			

Характеристика контактов

F 7S12 - Электрическая долговечность (AC) при ном. нагрузке -**75.12**

H 7S12 - Макс. отключающая способность DC - 7S.12



• При коммутации нагрузки с меньшими значениями напряжения и тока, электрическая долговечность будет ≥ 100·10³.

F 7S16 - Электрическая долговечность (AC) при ном. нагрузке -7S.14 / 7S.16

H 7S16 - Макс. отключающая способность DC - 7S.14 / 7S.16

• При коммутации нагрузки с меньшими значениями напряжения и тока, электрическая долговечность будет ≥ 100·10³.

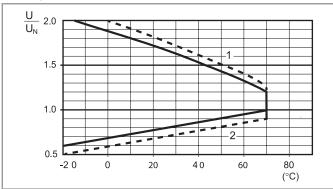
Характеристики катушки

Версия для DC - Тип 7S.12

верени дии ве тип и запа									
Номин.	Код	Рабочий диапазон		Расчетный	Расчетная				
напряж.	катушки			входной	мощность				
				ток	при U _N				
				при U _N					
U_N		U_{min}	U_{max}	I _N					
В		В	В	мА	Вт				
12	9 .012	9.6	14.4	55	0.7				
24	9 .024	16.8	30	38.2	0.9				

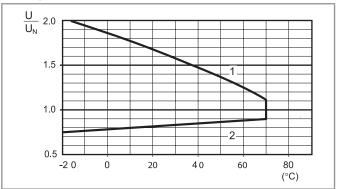
Версия для АС - Тип 7S.12

Depend American								
Номин.	Код	Рабочий диапазон		Расчетный	Расчетная			
напряж.	катушки			входной	мощность			
				ток	при U _N			
				при U _N				
U_N		U_{min}	U _{max}	I _N				
В		В	В	мА	ВА/Вт			
110125	8 .120	93	138	9.5	1.1/1			
230240	8 .230	195	264	9	2/0.8			


Версия для DC - Тип 7S.14 / 7S.16

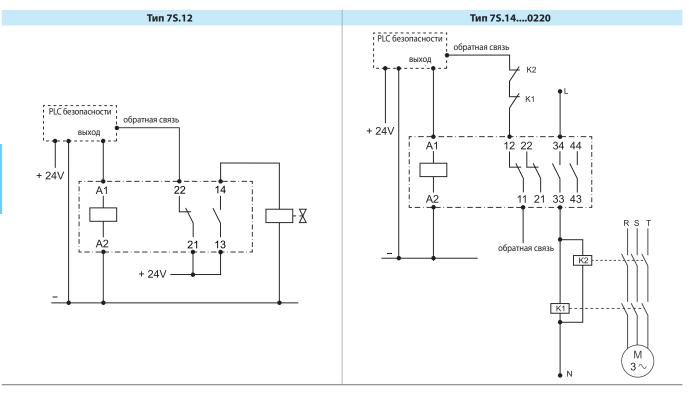
a a Primit Charles and a state of the state							
Код	Рабочий	диапазон	Расчетный	Расчетная			
катушки			входной	мощность			
			ток	при U _N			
			при U _N				
	U_{min}	U _{max}	I _N				
	В	В	мА	Вт			
9 .012	9.6	14.4	56	0.7			
9 .024	16.8	30	28	0.7			
9 .110	77	138	9.2	0.7			
	9. 012 9. 024	Сматушки Umin В 9.012 9.6 9.024 16.8	Umin Umax B B 9.012 9.6 14.4 9.024 16.8 30	катушки Входной ток при U _{min} U _{max} I _N В В МА 9.012 9.6 14.4 56 9.024 16.8 30 28			

Версия для АС - Тип 7S.14 / 7S.16

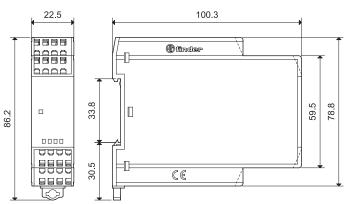

Номин.	Код	Рабочий диапазон		Расчетный	Расчетная
напряж.	катушки			входной	мощность
				ток	при U _N
				при U _N	
U _N		U _{min}	U _{max}	I _N	
В		В	В	мА	ВА/Вт
110125	8 .120	93	138	8.9	1.1/0.9
230240	8 .230	195	264	8.5	2/0.8

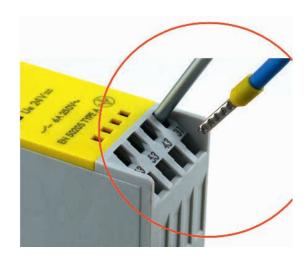
R 7S - Отношение рабочего диапазона для DC к температуре окр. среды - 7S.12 / 7S.14 / 7S.16

- 1 Макс. Допустимое напряжение на катушке.
- Мин. Напряжение удержания катушки при температуре окружающей среды.
 - ---- только катушки 24 и 110 B DC (расширенный диапазон))


R 7S - Отношение рабочего диапазона для АС к температуре окр. среды - 7S.12 / 7S.14 / 7S.16

- 1 Макс. Допустимое напряжение на катушке.
- Мин. Напряжение удержания катушки при температуре окружающей среды.


Схема подключения



Чертежи

Пружинные клеммы

Аксессуары

Блок маркировок, (для термопринтеров CEMBRE), пластик, 48 шт, 6 х 12 мм

060.48